Clustering

K-Means Clustering

- Given k, the k-means algorithm consists of four steps:
 - Select initial centroids at random.
 - Assign each object to the cluster with the nearest centroid.
 - Compute each centroid as the mean of the objects assigned to it.
 - Repeat previous 2 steps until no change.

K-Means Clustering (contd.)

• Example

Comments on the *K*-Means Method

- <u>Strengths</u>
 - Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
 - Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as *simulated annealing* and *genetic algorithms*
- <u>Weaknesses</u>
 - Applicable only when *mean* is defined (what about categorical data?)
 - Need to specify k, the number of clusters, in advance
 - Trouble with noisy data and outliers
 - Not suitable to discover clusters with *non-convex shapes*